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Abstract

Identifying landslides from remote imagery is critical for rapid responses after1

landslide hazards and for assessing their environmental impacts. Existing datasets2

for landslide detection models are mostly based on multi-sourced, high-resolution3

(e.g., 1-5 m) satellite imagery from commercial companies (e.g., Planet Labs) and4

ultra-high-resolution (e.g., < 1m) photos from unmanned aerial vehicle (UAV) sur-5

veys. However, obtaining those data is often economically expensive and labor-6

intensive, limiting their applicability. Those datasets may not fully characterize7

large, deep-seated landslides (>10,000 m2) – a most damaging hazard – across8

broad mountain ranges (10s km x 100s km). Here we present ‘LandsatQuake,’9

a benchmark dataset composed of 31 landslide inventories from 21 earthquake-10

prone regions across the world covering a total area of 5.56× 107 km2 and span-11

ning the last 40 years. This dataset emphasizes practicality by using satellite im-12

ages acquired by Landsat, the only satellite system that has recorded Earth’s land13

surface for >40 years. The public availability, high coverage of the world, and14

longevity make the Landsat data ideal for developing historical and recent land-15

slide inventories caused by known triggers (e.g., earthquakes or rainstorms). The16

moderate resolution (30 m) allows LandsatQuake to fully characterize large land-17

slides (>10,000 m2) at mountain range scales. Additionally, we demonstrate the18

challenges of applying existing computer vision algorithms to practical landslide19

detection problems by evaluating several baselines and multiple landslide datasets20

using metrics including the signal-to-area ratio. Finally, we provide digital eleva-21

tion model (DEM) data for these regions and show the effectiveness of integrating22

DEM and slope data for landslide detection.23

1 Introduction24

Landslides represent a severe natural hazard. In the United States, landslides are estimated to cause25

25-50 deaths annually and more than one billion dollars in damages [Froude and Petley, 2018,26

Schuster and Highland, 2001]. Landslides can induce other cascading hazards, such as aggradation27

of river channels and flooding [Peng et al., 2014]. Additionally, landslides are a primary agent of28

erosion, acting to drive long-term landform changes and biogeochemical cycles [Hilton et al., 2011,29

Emberson et al., 2016].30

High-quality and timely landslide inventory maps are critical for mitigating and assessing landslide-31

induced damage. Most high-quality landslide inventories are produced from manual mapping, which32
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Figure 1: Map showing locations of all landslide inventories path of LandsatQuake

is labor-intensive and time-consuming [Galli et al., 2008]. We still lack ready open-source algo-33

rithms that allow efficient and rapid mapping of landslides after catastrophic landslide-triggering34

events. Automated landslide detection using machine learning is a rapidly growing field and pro-35

vides a much faster alternative to manual mapping [Milledge et al., 2021].36

Studies have shown that, in comparison to traditional machine learning methods, deep learning37

techniques can achieve superior performance when handling large-scale remote sensing data [qiang38

Yang et al., 2024]. Convolutional Neural Networks[Lecun et al., 1998] with the right architecture39

are shown to outperform methods like Artificial Neural Networks [Rosenblatt, 1958], Support Vec-40

tor Machines [Cortes and Vapnik, 1995] and Random Forest [Breiman, 2001] for satellite images41

from the Himalayan region [Ghorbanzadeh et al., 2019]. Fully Convolutional Networks [Long et al.,42

2015], such as the U-Net [Ronneberger et al., 2015] are also commonly used for landslide detec-43

tion as a semantic segmentation problem [Su et al., 2021]. Ullo et al. [2020] constructed landslide44

detection as an instance segmentation problem and used Mask-RCNN [He et al., 2018] with en-45

hancements to achieve superior performance. Although there have been various attempts to provide46

new architectures and techniques for landslide detection, most of these focus only on specific regions47

and fail to generalize to a broader distribution of satellite images or regions.48

In addition, current landslide detection models mainly rely on high-resolution satellite imagery (5-1049

m resolution) and/or ultra-high-resolution aerial photos (<1 m resolution), which require purchase50

from commercial companies and/or labor-intensive field drone surveys [Xu et al., 2024]. High-51

resolution datasets only cover very recent timespans (2010-2015 onwards), limiting models to learn52

from existing landslide data from before 2010. Additionally, current landslide detection models are53

unable to separate amalgamated landslides, which heavily skews volume calculations and gives an54

inaccurate estimate of landslide hazard magnitudes [Larsen et al., 2010].55

To address these challenges, we have developed a new dataset, LandsatQuake (LQ). This dataset56

is specifically designed for practical landslide detection:57

Broad Coverage and Historical Depth: LandsatQuake leverages imagery acquired by Landsat,58

the only satellite system that has consistently recorded Earth’s land surface for over 40 years. This59

dataset provides extensive historical data across 21 landslide-active regions covering a total land area60

of 5.56 × 107 km2. We focus on earthquake-impacted mountain ranges, given that earthquakes are61

a major trigger of landslides and can weaken rocks to induce landslides during storm events [Jones62

et al., 2021, Li et al., 2022a].63

Practical Relevance: Landsate images have a moderate resolution (30 m) Landsat, allowing the64

LandsatQuake dataset to fully characterize large, deep-seated landslides (>10,000 m2) over exten-65

sive mountain ranges (10s x 100s km).66

Integration with DEM Data: We provide digital elevation model (DEM) data for the regions cov-67

ered in LandsatQuake. Our experiments show the effectiveness of integrating DEM and slope data68

[Guzzetti et al., 2012] for improving landslide detection accuracy.69
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Figure 2: Workflow of LandsatQuake. Satellite images and DEMs are separately composited and
converted to a mosaic. The DEM mosaic covers less area than the satellite mosaic. Both mosaics are
then composited to a single image. Landslide polygons bounds are overlain on the image. Lastly,
the composite is segmented into various patches before being read into the model.

Cost-Effective and Accessible Data: Unlike high-resolution commercial satellite images and ultra-70

high-resolution UAV photos, Landsat imagery is open-source and free from licensing constraints.71

This makes it economically feasible and easily accessible for researchers and practitioners.72

Evaluation of Existing Models: Our evaluation of several traditional computer vision models on73

the LandsatQuake dataset demonstrates that their performance does not meet the practical require-74

ments necessary for effective landslide detection. This highlights the necessity of developing new75

methodologies that address real-world challenges.76

2 Related Work77

In recent years, growing efforts have been spent in developing benchmark datasets for landsldie78

detection models. Here, we compile information about three recent landslide datasets:79

(A) CAS Landslide Dataset is a collection of 3 band multi-sensor RGB images taken from nine80

distinct regions [Xu et al., 2024]. Satellite data were procured from Google Earth Engine (GEE),81

including images from Sentinel-2A and Landsat. This dataset also includes images from UAV drone82

surveys. Images have a ground resolution of 5 m or less. The landslide polygons were sourced from83

multiple open-source repositories.84

(B) Landslide4Sense dataset [Ghorbanzadeh et al., 2022] was a competition setup created by the85

Institute of Advanced Research in Artificial Intelligence (IARAI). The dataset is comprised of im-86

ages from Sentinel-2A and DEM and slope layers from the Advanced Land Observing Satellite87

(ALOS). The images used 14 bands, the first 12 corresponding to the bands from sentinel and the88

last 2 corresponding to DEM and Slope data from ALOS. Four regions were used in this study, and89

the dataset was split into training, test, and validation parts.90

(C) HR-GLDD Meena et al. [2023] is a global dataset using generalized deep learning for landslide91

mapping on high-resolution satellite images. This dataset incorporates images from PlanetScope92

taken after 2016 with a ground resolution of 3 m. Images are composed of 4 bands: Red, Green,93

Blue, and Near Infrared. 13 landslide events from various triggers were incorporated into the study,94

half of which were triggered by earthquakes and the other half by rainfall.95

These three studies use high-resolution (<10 m) images and cover the recent decade (2015 and on-96

ward). However, as pointed out in several of these studies, there is a lack of globally distributed97

datasets [Meena et al., 2023]. Satellite images with extensive global coverage tend to have a moder-98

ate resolution, whereas models trained on high-resolution data may not perform well on moderate-99

resolution data. Consequently, these models likely work best with a small, highly curated portion of100

available landslide inventories. These models will miss the nuances present in more realistic data.101

Another limitation is that two of these three datasets do not include topography data. Landslides102
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(a) Raw Image before Transformation (b) Image after Contrast Stretch

Figure 3: Comparison of satellite image a) before and b) after histogram stretching. Several types
of histogram stretches were tested (including linear, percent clip, and histogram equalized stretch).
Best result was from a contrast stretch with a brightness-dampening factor.

generally occur on steep slopes and medium-to-high elevations, thus including digital topography103

data (slope and elevation) would give the model complementary information for landslide detection104

[Guzzetti et al., 2012].105

3 Problem Definition & Dataset106

3.1 Data Procurement107

Satellite image data was downloaded from the USGS through EarthExplorer usg. Images were108

selected from ± 2 years from when an earthquake event occurred. Images with less than 20 percent109

cloud cover were chosen. Downloaded images were approximately 2 by 2 degrees in size depending110

on their location. Images came projected in local UTM coordinate zones. The study uses images111

from the Landsat 4, 5, and 8 missions, all of which have 30 m ground resolution. Landsat 7 was112

excluded from this study, as many images have artificial strips due to failure of its scan line corrector113

Storey et al. [2003]. Landsat 4 and 5 were formatted as 8 bit images, whereas Landsat 8 was114

packaged as 16 bit. To normalize our image format, we converted all 16-bit images to 8-bit.115

DEM data was acquired from ALOS Global Digital Surface Model generated by the Panchromatic116

Remote-sensing Instrument for Stereo Mapping (PRISM) ?. This dataset has a ground resolution of117

30 m. DEM data were downloaded in 1-degree x 1-degree tiles. Downloaded images were in the118

EPSG 4326 coordinate system and were re-projected to local UTM coordinate zones.119

The LandsatQuake dataset uses 31 landslide inventories from 21 major earthquake-impacted moun-120

tain regions (Table 1). The landslide inventories were sourced from the USGS earthquake-triggered121

landslide inventory and from literature Marc et al. [2016], Schmitt et al. [2017], Li et al. [2022a].122

The polygons were processed to fix geometrical errors and projected to local UTM coordinates. Be-123

cause the images were too coarse to see small landslides, we filtered landslides smaller than 10,000124

m2. In practice, the >10,000 m2 landslides mostly correspond to deep-seated bedrock landslides that125

dominate total landslide volumes and have most significant impacts.126

3.2 Dataset Construction127

After compiling DEM and satellite imagery data for each region, we processed the data one region128

at a time. We first formed a mosaic of DEMs and, in parallel, composited the bands for each of the129

area patches in every region to form multi-band images. We then combined the DEM mosaics and130

satellite imagery into a single image file, with the landslide bounds overlain on top. The image was131

then segmented into patches of 224 pixel x 224 pixel. Lastly, we removed images with artifacts and132

high cloud coverage and input images with corresponding landslide coverage into the model.133

The following Landsat bands were included in the dataset: Band 1—blue; Band 2—green; Band134

3—red; Band 4 near-infrared (NIR); Band 5—short wave infrared 1 (SWIR 1); Band 7—short wave135

infrared 2 (SWIR 2). Band 6, the thermal band, was excluded from this study because it was not136

available for the Landsat 4 and 5 images.137
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Event Name Satellite Mission Total LS Polygon
Area (m²)

Total Landslide-Impacted
Landscape Area (m²)

1984 Nagano Landsat 5 691,758.9 103,576,600.0
1987 Sichuan Pre-earthquake Landsat 4 & 5 135,000,000.0 44,492,800,000.0

1991 Limon Earthquake Landsat 4 & 5 3,191,348.0 1,890,711,000.0
1998 Jueili Landsat 5 798,792.6 220,086,400.0

1999 Chamoli Earthquake Landsat 5 13,925,520.0 7,271,280,000.0
1999 ChiChi Earthquake Landsat 5 95,281,110.0 13,853,220,000.0
2004 Chūetsu Earthquake Landsat 5 3,408,261.0 186,418,000.0
2005 Kashmir Earthquake Landsat 7 105,000,000.0 4,624,910,000.0

2008 Iwate Earthquake Landsat 5 7,400,152.0 550,880,400.0
2009 Cinchona Landsat 7 13,774,950.0 315,402,500.0

2010a Haiti Landsat 5 2,585,252.0 2,652,562,000.0
2010b Haiti Landsat 5 8,082,003.0 3,636,516,000.0

2011 Sikkim Earthquake Landsat 5 24,841,270.0 4,319,320,000.0
2014 Ludian Earthquake Landsat 8 3,025,449.0 185,513,200.0
2015 Gorkha Earthquake Landsat 8 47,225,690.0 33,912,650,000.0

2016 Capellades Landsat 8 479,465.6 18,924,310.0
2017 Milin Landsat 8 29,617,520.0 697,679,400.0

2018 Sulawesi (2021) Landsat 8 14,237,000.0 3,561,889,000.0
2018 Papua New Guinea Landsat 8 161,000,000.0 55,434,590,000,000.0
2018 Lombok (2019a) Landsat 8 238,781.6 157,587,600.0

2019 Mesetas Landsat 8 472,647.1 269,697,100.0
2011 Arun Landsat 7 1,109,647.0 4,476,125,000.0
2012 Arun Landsat 7 1,135,598.0 2,137,784,000.0
2013 Arun Landsat 7 & 8 185,797.2 1,796,088,000.0
2014 Arun Landsat 8 407,968.0 1,174,011,000.0
2015 Arun Landsat 8 3,083,048.0 3,010,666,000.0
2016 Arun Landsat 8 2,638,067.0 4,729,137,000.0
2017 Arun Landsat 8 227,308.3 531,250,200.0
2018 Arun Landsat 8 466,409.3 1,254,700,000.0
2019 Arun Landsat 7 & 8 165,738.5 3,285,947,000.0
2020 Arun Landsat 8 678,627.1 1,723,635,000.0

Table 1: LandsatQuake covers 31 inventories across 21 regions, with a total area of 5.56× 107 km2.

We then created natural-colored (or RGB) images to make them look realistic and closer to the138

original data distribution commonly used by human annotators to map landslides. Specifically, we139

composited Band 3 in channel 1, Band 2 in channel 2, and Band 1 in channel 3. After combining140

these channels, the image was still dark (Figure 2a). To enhance visibility, we processed each141

image with a transform function 3. The function applied a contrast stretch to the image, spreading142

the intensity values over a larger range. This allowed the mid-tone values to be more visible and143

reduced the strength of the lightest and darkest values. The images were still bright after the contrast144

stretch, so a dampening factor was applied to reduce the intensity of the brightest pixels (Figure 2b).145

After processing the first three bands, we added bands 4,5,and 6 (Landsat Bands 4, 5, and 7). For146

the seventh band, we concatenated the DEM band crop obtained from the mosaic. We also added an147

eighth band as slope angles calculated from DEM in ArcGIS Pro, given that slope angles are a most148

common measure for landslide risks Guzzetti et al. [2012].149

4 Experiments150

4.1 Domain-specific Analysis151

4.1.1 Single-class Object Detection/Instance Segmentation over Semantic Segmentation152

In this section, we first convert all the datasets to object detection, similar to our dataset. Technically,153

it is possible to go from semantic segmentation to object detection, but this process is not lossless.154
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Multiple instances with overlaps will be considered as one object if we simply take the minimum155

and maximum bounds of a semantic cluster of pixels.156

For landslide detection in particular, it is practically crucial and useful to separate instances explic-157

itly. This is particularly important for the estimate of landslide volume, a basic measure of landslide158

hazard. The current approach to estimating landslide volume is based on empirical scaling between159

landslide area and landslide volume [Larsen et al., 2010]:160

V = α×Aγ (1)

where α and γ are empirical scaling coefficients, with γ being greater than 1 (around 1.5). For161

multiple landslides, their total volume is calculated as:162

Vtot =
∑

(α×Aγ
i ) (2)

However, landslides often occur in clusters where multiple landslides amalgamate [Marc and Hov-163

ius, 2015]. If the amalgamated landslides are mapped as one instance without being segregated into164

individual instances, the total volume would be wrongly estimated as:165

Vtot_w = α×
(∑

Ai

)γ

(3)

Comparing Eqs. (2) and (3) indicates that without splitting instances of landslides (as in instance166

segmentation or object detection), the actual landslide volume would be largely biased, as demon-167

strated in field studies [Marc and Hovius, 2015, Li et al., 2014].168

We emphasize that an accurate landslide volume estimate is important because it informs the amount169

of materials produced by landslides and the magnitude of landslide hazards, which are critical in-170

formation for stakeholders and decision-makers and for dispatching rescue forces after landslide171

hazards occur. Landslide volumes also indicate the magnitude of landslide-induced erosion, which172

is important for assessing mountain growth, a fundamental topic in geoscience [Li et al., 2014].173

4.1.2 Signal-to-Area Ratio (SAR)174

One way to capture information about landslide areas in computer vision applications is through175

the signal-to-area ratio (SAR), the ratio between landslide area and the total area of surrounding176

landscapes. Since instance-level information is not available in the previous datasets (L4S, CAS,177

and HR-GLDD), we calculate the SAR by summing the number of landslide pixels and dividing by178

the total area of the image (similar to the pixel ratio [Zhang et al., 2019]). This method allows us to179

provide a comprehensive comparison across all datasets. For CAS, we only consider images from180

satellite sources, excluding those from UAV surveys.181

From Figure 4a, we see that LandsatQuake has narrow, clustered, and low SAR whereas L4S and182

CAS have more distributed SAR. LandsatQuake has significantly lower SAR than the other datasets.183

We next prepared various object detection subsets and analyzed the mean Average Precision (mAP)184

by sampling the datasets to generate subsets with varying medians, [Everingham et al., 2010]]. The185

result mAP plotted against the median SAR of the datasets (Figure 4b). Although one would expect186

that models have better performance as the SAR increases, Figure 4b indicates that such a correlation187

does not show up clearly in these datasets.188

Observations show that, for the same dataset, as the SAR increases, performance fluctuates but gen-189

erally increases under high SAR. In addition, for CAS, subsets that have very similar median values190

nonetheless exhibit remarkably different mAP values, both on average and at the 50th percentile.191

These observations suggest that factors other than SAR, such as color contrasts (e.g., landslides192

typically appear in lighter colors compared to the predominantly green surrounding vegetation),193

might have a more significant impact on model performance.194
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(a) SAR Distribution for different datasets (b) mAP with Faster R-CNN (ResNet-50)

Figure 4: ((a) SAR distribution of three datasets: LQ (ours), CAS, and L4S, presented on a loga-
rithmic scale for clearer comparison. (b) To align the number of images across datasets, L4S and
CAS were divided into equi-distributional groups (2 and 7, respectively). By replacing the top x%
of images from the primary group with the bottom x% from another group, we created subsets with
varied medians, for which we report the mean Average Precision (mAP).

4.1.3 Expert Review195

Identifying and quantifying all possible factors that affect landslide detection from satellite imagery196

may be challenging and impractical. To bypass this level of abstraction, we gathered direct input by197

showing both raw and annotated images to experts in landslide annotation. This approach ensures198

that any significant factors influencing landslide detection are inherently embedded in the feedback199

we receive from experts in the field, as they provide the primary landslide annotation data.200

To conduct this study, we randomly sampled 100 images from each dataset (L4S, CAS, and Land-201

satQuake). After annotating these images based on the truth labels, we shuffled them to prepare for202

evaluation. We then presented these images to experts, asking them to assign a score between 1 and203

10 for each image to represent the ease of identifying landslides, where 1 indicates the hardest/most204

likely to miss and 10 denotes the easiest/most likely to detect. This study was conducted with three205

experts, and the results are reported in Table 2 below.206

Score Expert A Expert B Expert C Average
CAS 5.61 7.60 6.03 6.41
Landslide4Sense 6.9 8.39 4.78 6.69
LandsatQuake 2.0 1.81 1.12 1.64

Table 2: Scores of three GeoScience experts and the average scores for each dataset

The scores reveal drastic differences in the difficulty level of identifying landslides between Land-207

satQuake and other existing datasets. This highlights the challenges associated with using open-208

source Landsat imagery for landslide detection in contrast to high-resolution images from previous209

deep learning-based datasets.210

4.2 Models211

Acknowledging the difficulty in detecting landslides from Landsat imagery, we measured the per-212

formance of various existing computer vision models to assess how current CV methods struggle213

with realistic, moderate-resolution datasets such as LandsatQuake.214

To quantify these challenges, we trained Faster R-CNN [Ren et al., 2016] object detection models215

using PyTorch with various feature-extracting backbones. The dataset was prepared by segregating216

images and labels into training, validation, and test datasets with a split of 80%, 10%, and 10%,217

respectively, with data configurations loaded from YAML files. Since our data is very different in218
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Model (Backbone) mAP (Average) mAP @ 50% IoU (mAP50)
ConvNeXt Small [Liu et al., 2022] 0.000018 0.000090
ConvNeXt Tiny [Liu et al., 2022] 0.000064 0.000319
EfficientNet [Tan and Le, 2020] 0.000081 0.000202
Darknet [Redmon, 2013–2016] 0.000990 0.004950
ResNet18 [He et al., 2015] 0.000021 0.000140
ResNet50 FPN [He et al., 2015] 0.002975 0.010006
ResNet101 [He et al., 2015] 0.000033 0.000083
ResNet152 [He et al., 2015] 0.000024 0.000066
SqueezeNet 1.0 [Iandola et al., 2016] 0.000073 0.000163
SqueezeNet 1.1 [Iandola et al., 2016] 0.000043 0.000163
Swin [Liu et al., 2021b] 0.000040 0.000146
ViTDet Tiny [Li et al., 2022b] 0.000017 0.000086
ViTDet [Li et al., 2022b] 0.000043 0.000143

Table 3: Comparison of mAP scores for Faster R-CNN with different backbones evaluated on LQ.

distribution from most standard pre-training datasets such as ImageNet [Krizhevsky et al., 2012] or219

Common Objects in Context [Lin et al., 2015], we evaluated our models by using backbones trained220

from scratch. We chose a batch size of 8 and 20 training epochs across all different configurations221

(backbones), and optimization was performed using the Stochastic Gradient Descent (SGD) [LeCun222

et al., 1998] optimizer with momentum 0.9 and a learning rate of 0.001. Model performance was223

evaluated based on mean Average Precision (mAP) at different Intersection-over-Union (IoU) [Ev-224

eringham et al., 2010] thresholds (specifically from 0.5 to 0.95 in steps of 0.05), and models were225

saved according to the best validation mAP observed. We have reported the mAP average and mAP226

@ IoU=50 values for various transformer-based and convolution-based backbones in Table 4.227

The results show that traditional computer vision models, which are optimized and improved iter-228

atively for standard deep learning benchmarks, perform poorly on LandsatQuake. Thus, applying229

existing models to Landsat-based data remains challenging.230

4.3 Effect of Extra Spectral Bands231

All experiments conducted thus far have utilized only RGB bands to ensure consistency in the evalu-232

ation of datasets (since the sources are typically different satellites with different bands) and to align233

with models typically developed for RGB datasets. In this section, we assess the utility of additional234

bands from our dataset by employing a Faster R-CNN model with a ResNet-50 backbone, modified235

to accept 6 input channels instead of 3. The model was trained and validated using custom means236

and standard deviations for normalization as [0.0]s and [1.0]s, respectively, for a total of 20 epochs237

to maintain uniformity across experiments. We utilized an Adam [Kingma and Ba, 2017] optimizer238

with a learning rate of 0.0005 and included weight decay for regularization. A ReduceLROnPlateau239

learning rate scheduler was applied to adjust the learning rate based on validation loss, with a pa-240

tience of 5 epochs and a reduction factor of 0.1. The dataset was split into training, validation, and241

test sets, each loaded with a batch size of 8. We initially mask Channels 4, 5, and 6 (i.e., Landsat242

Bands 4 (NIR), 5(SWIR 1), and 7 (SWIR 2)). Subsequently, we evaluate the model’s performance243

by unmasking one channel at a time and reporting the mAP scores.244

DEM and slope data are commonly considered useful for landslide detection [Guzzetti et al., 2012,245

Wang et al., 2021]. Therefore, we incorporated these as the 7th and 8th bands in our dataset. To246

evaluate the comprehensive performance using all these bands, we performed a similar assessment,247

utilizing 8 input bands instead of 6, and compared the performance with various configurations of248

masked data.249

Our results (Table 4) indicate a general trend of improved performance with the inclusion of more250

bands and information. Although this trend is not consistently reflected in the mAP average, the251
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#Bands mAP (Average) mAP @ 50% IoU (mAP50)
3 bands 0.0009197 0.003822
4 bands 0.0010123 0.001817
5 bands 0.0077761 0.022527
6 bands 0.0053710 0.012381

DEM (8 bands) 0.0034852 0.034486

Table 4: Comparison of Faster R-CNN (ResNet-50) with different number of input bands.

mAP at 50% IoU provides a more practical metric for comparison. This metric is more forgiving252

and considers predictions that are sufficiently accurate to be practically meaningful. We note a253

stronger correlation between the number of bands and performance, with the addition of DEM bands254

significantly enhancing the model’s performance measured by mAP at 50% IoU.255

5 Limitations and Future Work256

First, due to the dataset’s complexity, most out-of-the-box computer vision models struggle to learn257

effectively from LandsatQuake. This difficulty hampers the ability to conduct analysis of learned258

models [Grün et al., 2016] for insights, making it challenging to understand the models and visualize259

the internal representation of features.260

Second, despite improvements in data quality and satellite technology over time, our dataset relies261

on shapefiles for incidents from various years in the past. Consequently, the only available source262

of satellite images for those old events is often Landsat (which is open-source and has a timespan263

of over 40 years [Wulder et al., 2022]), either due to licensing restrictions or because it is the sole264

source available for older events.265

Thirdly, the continuing evolution of satellite technology [García-Arenal and Fraile, 2017] makes it266

challenging to provide a universal format that can integrate our Landsat-based dataset with those267

using images from other sources.268

Finally, although the inclusion of DEM bands improves performance, the typical mAP scores for269

small object detection problems [Liu et al., 2021a] and sparse datasets, including those in aerial270

imagery [Koyun et al., 2022], can be up to an order of magnitude higher. This emphasizes the need271

for more specific methods for landslide detection.272

6 Conclusion273

We present LandsatQuake, a large-scale dataset for landslide detection. This dataset covers 21274

landslide-active regions and 31 landslide inventories from the last 40 years and utilizes the open-275

access Landsat imagery, offering historical data across various global locations. It is particularly276

valuable as it mirrors the real-world conditions of landslide detection, using only openly accessible277

and widely available imagery. We tested several traditional computer vision models on this dataset278

and showed that their performance does not meet the practical requirements necessary for effective279

implementation. This initiative highlights the necessity of developing methodologies and datasets280

that not only refine traditional performance metrics but also address practical and realistic challenges281

that are pressing and crucial, such as those in landslide detection.282
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